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Abstract

The exponential growth of digital data and rising concerns over privacy have highlighted the
limitations of centralized storage systems, which suffer from scalability bottlenecks, single
points of failure, and insufficient built-in security. To address these challenges, we present a
peer-to-peer (P2P) distributed file storage system that integrates lightweight compression,
strong encryption, chunk-based distribution, and replication with automated self-healing.
Files are segmented, compressed using LZ4, and encrypted with authenticated encryption
schemes (AES-256-GCM or ChaCha20-Poly1305). Consistent hashing distributes chunks
evenly across peers, while replication ensures durability. Metadata is managed using
BadgerDB to maintain file-chunk mappings, cryptographic keys, and operational logs. The
system provides a command-line interface (CLI), uses HTTP endpoints for peer discovery,
and leverages gRPC for efficient data transfer. Preliminary evaluation indicates reduced
storage overhead, improved retrieval speed, and resilience under node churn. This work lays
the foundation for future enhancements such as access control, deduplication, versioning, and
dashboard-based observability.

Keywords - Peer-to-Peer, Distributed Storage, File Compression, Encryption, Replication,
Metadata Management, gRPC



1. Introduction

The rapid growth of global data has
created significant challenges for storage
infrastructure, with estimates suggesting
that the total volume of digital information
will surpass 180 zettabytes by 2025 [1].
Conventional centralized storage
platforms, such as Dropbox and Google
Drive, have provided convenient solutions
but remain fundamentally limited. By
concentrating both resources and risks
within a single infrastructure, these
systems are highly susceptible to outages,
cyberattacks, and escalating operational
costs. In addition, their approach to data
security often treats encryption as a
supplementary feature rather than a
foundational principle, thereby exposing
users to potential privacy breaches [2], [3].

To address these limitations, peer-to-peer
(P2P) architectures have emerged as an
appealing alternative. By distributing
storage responsibilities across multiple
nodes, P2P networks inherently improve
fault tolerance and scalability [4].
However, existing implementations still
struggle to integrate advanced features
such as real-time compression, robust
encryption, and automated replication in a
seamless manner [5], [6]. As a result, their
adoption n performance- and
security-sensitive domains has remained
limited.

This research presents the design and
implementation of a secure, efficient, and
modular peer-to-peer distributed storage
system that overcomes these shortcomings.
The system combines L.Z4-based real-time
compression [7], authenticated encryption
mechanisms [8], and consistent hashing to
deliver reliability, efficiency, and privacy

by design. A carefully constructed upload
and  retrieval  pipeline  integrates
compression, encryption, and chunking
into a streamlined process, while
replication and self-healing mechanisms
ensure durability even in environments
characterized by dynamic peer churn [9],
[10]. Furthermore, the system incorporates
a security model with strong key
management and hardened transport
layers, supported by a metadata tier built
on BadgerDB to track file-chunk
mappings, encryption details, timestamps,
and operation logs.

To reduce operational friction and enhance
usability, the system provides both
command-line and HTTP-based interfaces,
while gRPC ensures efficient and typed
data  transfer [11]. The resulting
architecture eliminates single points of
failure, achieves horizontal scalability, and
embeds robustness and privacy as core
design principles rather than afterthoughts.
In addition, the paper outlines a
comprehensive benchmarking strategy to
evaluate throughput, latency, availability,
recovery, and storage efficiency, thereby
validating  the  system’s  practical
applicability [12], [13].

In summary, this work contributes to
complete implementation-oriented
architecture for encrypted and compressed
peer-to-peer storage that not only improves
efficiency but also redefines the role of
privacy and resilience in distributed
systems [14]-[16].



2. Literature Review

Many researchers have explored the
combination of compression, encryption,
and  distributed architectures, each
contributing significant insights into
efficient and secure data storage. Early
studies have shown that compression-first
transfer pipelines can substantially reduce
bandwidth consumption and improve
overall system efficiency, making them
highly suitable for large-scale storage
environments [5], [12]. Authenticated
encryption schemes such as AES-GCM
and ChaCha20-Poly1305 have also been
widely adopted for their ability to
guarantee  both  confidentiality  and
integrity with relatively low computational
overhead [8], [16]. Distributed file
systems, particularly the InterPlanetary
File System (IPFS), demonstrate the
advantages of peer-to-peer addressing and
resilience against single points of failure
[3], [10]. However, despite its robustness
in distribution, IPFS does not natively
incorporate encryption or compression,
limiting its applicability in environments
where both data security and efficiency are
primary requirements. Consistent hashing
has therefore emerged as a standard
technique for balancing load and ensuring
fair distribution of data chunks across
dynamic  peer clusters, providing
robustness in networks where nodes
frequently join or leave [9], [20].

The field of peer-to-peer systems has seen
substantial progress, with IPFS serving as
one of the most influential designs for
decentralized file storage based on content
addressing. While its advantages in
scalability and replication are widely
recognized, its lack of integrated security
mechanisms has restricted its adoption in

sensitive domains. Subsequent studies,
such as the work of Mislove and Druschel,
investigated scalable search and storage
techniques in dynamic P2P environments,
highlighting the challenge of maintaining
resilience in the face of high node churn
[4]. These findings underscore the
importance  of designing distributed
architectures that can withstand instability
while sustaining performance. More recent
surveys on P2P file sharing systems and
distributed file systems also reinforce the
need for integrating stronger security
models into decentralized designs [1], [7],
[15].

Research on data compression and
encryption has similarly evolved in
parallel  with  distributed  storage.
Compression has long been recognized as
essential for reducing storage overhead
and improving transmission efficiency.
Classical approaches such as the
Burrows—Wheeler  Transform  (BWT)
demonstrated the theoretical benefits of
sequence-based transformations [5], but
modern lightweight algorithms like LZ4
provide a more practical balance between
compression ratio and speed [6], [13].
LZ4, in particular, has been highlighted for
its fast decompression performance,
making it highly suitable in real-time
systems where quick data retrieval is
critical [7]. On the encryption front,
AES-GCM has become the de facto
standard due to its robustness and
widespread hardware acceleration support
[2], while ChaCha20-Poly1305 has been
increasingly deployed in scenarios where
AES acceleration is not available or
desirable [16]. Together, these methods
offer a dual advantage: reduced resource
consumption and uncompromised security.



Another key research area involves file
chunking and replication strategies.
Dividing files into smaller, manageable
chunks improves scalability and fault
tolerance,  enabling  efficient  data
distribution across a peer network.
Consistent hashing has proven effective
for distributing chunks evenly while
minimizing reshuffling overhead when
nodes join or leave [9], [20]. Replication,
often  implemented through simple
triple-replica strategies, remains essential
for ensuring data durability and
availability, particularly under frequent
churn conditions [8], [14]. Recent works
have also proposed blockchain-assisted
replication and access control models that
further strengthen integrity and auditability
in distributed environments [10], [14].

This study builds upon and synthesizes
these research directions by proposing a
unified architecture that integrates
compression, encryption, distribution, and
replication within a single peer-to-peer
framework. Unlike prior approaches that
often treated these components in
isolation, our  design  emphasizes
confidentiality, integrity, efficiency, and
durability as inseparable requirements of
modern distributed storage systems [11],
[18]. By aligning storage optimization
with robust security primitives and
scalable  distribution  strategies, our
approach seeks to overcome the
fragmentation in prior solutions and
provide a cohesive model suitable for
real-world deployments.

3. Design Goals and Requirements

The design of the proposed system is
driven by a set of goals that ensure it

remains secure, efficient, scalable, and
reliable, while also being simple to operate
and flexible enough to accommodate
future extensions. Security forms the
foundation of the architecture. Every data
chunk stored in the system is encrypted
using authenticated encryption methods
such as AES-GCM and
ChaCha20-Poly1305, which are widely
recognized for offering both
confidentiality and integrity guarantees
with minimal computational overhead [8],
[16]. Authentication is enforced across all
inter-node communications, and optional
support for TLS further strengthens the
protection of data in transit. This layered
security model aligns with recent studies
on secure cloud and distributed storage,
which emphasize that encryption and
access control must be embedded as core
design elements rather than added as
secondary features [2], [14].

Efficiency 1s an equally important
objective. The system integrates the LZ4
compression algorithm to reduce storage
overhead while maintaining extremely fast
decompression speeds. This choice is
supported by prior evaluations of
compression in distributed file systems,
which  demonstrate that lightweight
algorithms such as LZ4 strike the best
balance between resource consumption
and throughput in real-time environments
[7], [12]. By prioritizing performance and
minimizing CPU overhead, the system is
well-suited for latency-sensitive
applications, such as distributed analytics
platforms and large-scale cloud storage
backends.

Scalability is achieved through the
adoption of consistent hashing, a technique
extensively studied in distributed systems



literature for its ability to balance loads
and avoid excessive reshuffling as nodes
join or leave the network [9], [20]. This
approach allows the system to scale
horizontally without imposing complex
rebalancing operations,
predictable performance even under
dynamic peer churn. To guarantee
availability and durability, the system
incorporates a replication factor of three, a
standard approach in distributed storage
frameworks such as HDFS and Ceph,
which has been shown to offer a practical
balance between fault tolerance and
storage efficiency [8], [13]. Moreover, the
system integrates proactive self-healing
mechanisms that automatically restore
missing replicas, reducing downtime and
ensuring resilience in the face of failures.

ensuring

Operational simplicity is another central
design requirement. The system provides a
lightweight command-line interface (CLI)
that consolidates management tasks,
making it accessible to both developers
and administrators. Health monitoring is
supported through HTTP endpoints, while
communication  between  peers s
facilitated using gRPC, a modern protocol
that supports efficient, type-safe, and
low-latency data transfer [11]. These
design decisions are consistent with recent
research advocating for operationally
lightweight  distributed systems that
minimize complexity
without sacrificing robustness [3], [15].

administrative

Finally, extensibility is emphasized to
ensure the system remains relevant as new
requirements emerge. The architecture has
been structured to support enhancements
such as file versioning, public link sharing,
fine-grained access control,
dashboard-based monitoring, and

geo-aware replication strategies. Similar
directions have been proposed in recent
surveys on distributed file systems, which
identify modularity and extensibility as
critical requirements for future-proof
storage infrastructures [1], [17]. By
aligning with these design priorities, the
proposed system contributes a balanced
solution that simultaneously addresses the
fundamental requirements of modern
distributed file storage while remaining
adaptable to evolving demands.

4. System Architecture

The architecture of the proposed system
has been designed with modularity,
extensibility, and resilience as its guiding
principles. It brings together several
critical components that collectively
ensure secure storage, efficient data
transfer, reliable replication, and seamless
user interaction in a peer-to-peer
environment. Unlike centralized storage
systems, which rely on a single control
plane, the architecture deliberately
decentralizes core functionalities such as
chunk storage, replication, and metadata
tracking. This approach reduces the risk of
bottlenecks, enhances scalability, and
improves fault tolerance in dynamic
network environments, in line with the
trends observed in modern distributed file
system designs [1], [7].

At the user-facing layer, the client SDK
and command-line interface (CLI) serve as
the primary interface for interacting with
the system. The CLI not only hides the
underlying complexity of compression,
encryption, chunking, and communication
but also provides an intuitive set of



commands for everyday operations. Users
can upload files, download and reassemble
them, rename stored content, or delete
outdated data without having to directly
interact with the distributed network. This
design ensures that even non-technical
users can benefit from the advanced
security and efficiency features embedded
in the system. The SDK also exposes
programmatic access, enabling developers
to integrate storage functionalities into

higher-level applications.

user-centric interfaces have been adopted
in recent distributed and cloud-based file
systems to lower operational complexity

Similar

The next critical layer is the storage
infrastructure, built upon chunk nodes that
persist encrypted chunks on local disks.
These nodes are lightweight in design but
collectively  provide storage
capacity when scaled across a network.
Each chunk node actively participates in
replication processes, ensuring redundancy
and fault tolerance, a design pattern also
reflected in distributed storage frameworks
such as HDFS and Ceph [8], [13]. A
BadgerDB-backed  metadata  service
supports these operations by maintaining
mappings between file identifiers and their
respective chunk hashes, along with

massive

[2], [15]. associated encryption details, timestamps,
and replication status. The metadata
service also records lifecycle operations
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Fig 1: Block Diagram of DisktroByte

such as renames and deletions, making the
system auditable and transparent. While
the current implementation employs a
centralized metadata service for simplicity,
the  architecture  anticipates  future



decentralization to remove potential
bottlenecks at very large scales [10], [17].

To balance load across the network, the
system employs a registry that implements
consistent hashing. Consistent hashing
minimizes the movement of chunks when
new nodes join or existing nodes leave,
ensuring stability in highly dynamic
peer-to-peer environments. This technique
has been extensively validated in prior
research as a reliable way to distribute data
evenly while avoiding hotspots [9], [20].
On top of this, the replication manager
constantly — monitors  system health,
enforcing a default replication factor of
three. If a node fails or becomes
unavailable, the replication manager
initiates a self-healing
automatically restoring missing replicas
from healthy nodes. This guarantees that
availability and durability requirements are
met, even in the presence of frequent
churn, similar to approaches discussed in
recent surveys on scalable distributed file
systems [5], [14].

Pprocess,

Networking is another crucial aspect of the
system. A dual-layer communication
model is used to balance transparency with
performance. On one hand, HTTP
endpoints provide lightweight services
such as peer discovery, liveness checks,
and basic monitoring. On the other hand,
gRPC is leveraged for high-performance
communication, especially for bulk data
transfer and control plane operations.
gRPC supports strongly typed interactions
and  efficient  serialization,  which
minimizes latency and bandwidth usage
during data exchange. This layered design
makes the system both developer-friendly
and performance-optimized, aligning with

modern P2P storage frameworks [11],
[19].

The flow of data within the system is
carefully structured. During an upload, the
file is first passed through an LZ4
compressor to reduce storage footprint and
transmission cost. Once compressed, the
file undergoes encryption using
AES-256-GCM or ChaCha20-Poly1305,
both of which are authenticated encryption
schemes that guarantee confidentiality and
integrity [6], [16]. The resulting ciphertext
is then split into fixed-size chunks,
typically ranging between 1 MB and 8
MB, each chunk being hashed using
SHA-256 for unique identification and
integrity verification. Consistent hashing is
used to assign these chunks to nodes, and
replication ensures redundancy. Finally,
the metadata service is updated to reflect
the new file’s mappings and cryptographic
context. During a download, this process is
reversed: the client queries the metadata
service, retrieves the relevant chunks,
verifies their integrity, decrypts the
content, decompresses the data, and
reassembles the original file. This pipeline
ensures that data remains secure,
consistent, and efficient throughout its
lifecycle [12].

The methodology underlying the system
can be broken down into several detailed
processes.  Chunking provides fault
isolation and efficient distribution by
splitting files into manageable segments.
Compression using LZ4 minimizes
overhead while providing extremely fast
decompression, enabling near real-time
access. Encryption with AES-256-GCM or
ChaCha20-Poly1305 ensures that each
chunk  remains confidential and
tamper-proof.  Distribution based on



consistent  hashing guarantees load
balancing and resilience under churn,
while replication with a factor of three
provides durability even in hostile
environments. Self-healing mechanisms
ensure that missing chunks are restored
automatically, maintaining data reliability
without human intervention [5], [13].
Metadata management with BadgerDB
ensures quick lookups and updates,
maintaining an accurate picture of the
system’s state. Networking, facilitated by
HTTP and gRPC, makes the system both
observable and performant. Each of these
processes  contributes to a tightly
integrated workflow where efficiency and
security reinforce each other rather than
competing.

Security is embedded at three distinct
levels. At rest, all chunks are encrypted
with unique per-file keys, preventing
unauthorized access even if nodes are
compromised. In transit, optional TLS and
mTLS secure inter-node communication
against eavesdropping and
man-in-the-middle attacks. Integrity is
guaranteed by  authentication  tags
associated with each encrypted chunk,
verified during retrieval to ensure data has
not been altered. The system also supports
key rotation at the file-version level,
ensuring long-term  security  against
evolving threats. This layered security
model ensures that the architecture not
only meets but exceeds the baseline
requirements for confidentiality, integrity,
and availability in distributed
environments [2], [14].

The system has been implemented in the
Go programming language, chosen for its
concurrency model, lightweight
goroutines, and efficient networking

libraries. The implementation follows a
package-based structure that separates
concerns  across peer management,
chunking, = compression,  encryption,
storage, metadata handling, distribution,
discovery, and transfer. This modular
design makes the system maintainable and
extensible. The CLI includes commands
such as "server" to launch a node, "chunk
<file>" to divide files, "upload <file>
<peer>" to compress, encrypt, and store
data, and "reassemble <name>" to retrieve
and reconstruct files. Local disk currently
serves as the default backend, though
support for S3 and MinlO is planned for
cloud-native deployments. Configuration
is flexible and can be managed through
YAML files or environment variables,
allowing users to tune parameters such as
ports, cipher selection, replication factor,
and compression policy [3], [15].

In summary, the system architecture
provides a comprehensive, end-to-end
solution for secure and efficient
peer-to-peer storage. By tightly integrating
compression, encryption, distribution, and
replication, it eliminates the shortcomings
of existing systems that address these
aspects in isolation. Its modular
implementation ensures adaptability to
future requirements, while its embedded
security model ensures resilience against
both accidental failures and malicious
threats. Figure 1 illustrates the interaction
between the core components and the flow
of data across the system, highlighting the
synergy between functionality and security

[11, [19].



5. Result and Conclusion

The initial evaluations have yielded
promising results, demonstrating the
effectiveness of the proposed system in
addressing the challenges of modern
distributed storage. One of the most
notable findings is the system’s ability to
significantly reduce storage overhead,
particularly for highly compressible files
such as text documents and log data. The
adoption of the LZ4 algorithm achieved
measurable space  savings  while
maintaining extremely fast decompression
speeds, which is vital for real-time access
scenarios [7], [12]. These results are
consistent with prior research showing that
lightweight compression schemes provide
substantial ~ performance  gains  in
distributed  storage systems without
imposing excessive CPU load [5], [18].

Fig 2: Command Line Interface of Project

Another key observation was the system’s
resilience to node failures. During
controlled experiments, the architecture
was able to automatically detect missing
chunks and restore them using replicas
maintained across the peer network. This
self-healing process proved reliable and
fast, ensuring that data availability was
preserved even under high churn
conditions. Such resilience aligns with the

strategies highlighted in distributed file
system studies, where replication and
proactive recovery are considered essential
for durability and fault tolerance [8], [13],
[20].

Fig 3: File Operation Logs

Scalability also emerged as a strong point
of the system. As additional nodes were
introduced, the  system’s  overall
throughput  improved  proportionally.
Consistent hashing ensured even load
distribution, preventing the emergence of
hotspots ~ and  maintaining  stable
performance across dynamic topologies
[9], [19]. Latency remained consistently
low, indicating that the system can handle
larger datasets and more intensive
workloads without compromising

efficiency. These outcomes validate the
architectural ~ choice of combining
chunking, compression, encryption, and
hashing into a streamlined workflow that
naturally scales with network growth [1],

[11].
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In terms of storage efficiency, the system
performed  particularly ~ well  with
compressible data. By compressing files
before storage, it achieved significant
reductions in storage requirements and
network transfer costs. For files that were
already compressed, such as video
archives and media files, the system
bypassed  unnecessary
thereby avoiding wasted computational
resources and  ensuring
performance. This adaptive behavior
mirrors the findings of recent studies that
emphasize the need for context-aware
compression in large-scale distributed
environments [6], [15].

compression,

consistent

0 0 0 Bytes

Fig 5: Dashboard of Disktrobyte

In conclusion, this research introduces a
peer-to-peer storage solution that tightly
integrates compression, encryption, and
replication to achieve both efficiency and
security. By leveraging LZ4 for
lightweight compression, AES-256-GCM
and ChaCha20-Poly1305 for authenticated
encryption, and consistent hashing for
balanced  distribution, the  system
demonstrates that it is possible to deliver
fast, secure, and fault-tolerant file storage

without relying on centralized

infrastructures [2], [14].
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Fig 6: Reassembly Command in
Disktrobyte

The initial results show that the system is
not only scalable and fault-tolerant but
also highly efficient in its use of resources.
Its self-healing replication mechanisms
guarantee availability during node churn,
while the integrated compression and
encryption pipeline reduces bandwidth
consumption and storage costs. These
features collectively position the system as
a viable alternative to centralized
cloud-based storage solutions, which often
suffer from cost inefficiencies and single
points of failure [3], [16].
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Fig 7: System Administration Interface

Looking ahead, further improvements are
planned to enhance the system’s
capabilities. Future work will focus on
integrating decentralized metadata
management to  remove  potential
bottlenecks, improving access control with
certificate- or attribute-based models, and



incorporating geo-aware replication to
optimize wide-area deployments [10],
[17]. Additionally, the introduction of
features such as file versioning, public link
sharing, and a monitoring dashboard will
improve usability and make the system
attractive for broader adoption in
enterprise and research contexts. These
planned enhancements build upon the
strong foundation of this work, with the
goal of delivering a truly robust and
adaptable distributed storage solution [4],
[15].
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