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Abstract 

The exponential growth of digital data and rising concerns over privacy have highlighted the 
limitations of centralized storage systems, which suffer from scalability bottlenecks, single 
points of failure, and insufficient built-in security. To address these challenges, we present a 
peer-to-peer (P2P) distributed file storage system that integrates lightweight compression, 
strong encryption, chunk-based distribution, and replication with automated self-healing. 
Files are segmented, compressed using LZ4, and encrypted with authenticated encryption 
schemes (AES-256-GCM or ChaCha20-Poly1305). Consistent hashing distributes chunks 
evenly across peers, while replication ensures durability. Metadata is managed using 
BadgerDB to maintain file–chunk mappings, cryptographic keys, and operational logs. The 
system provides a command-line interface (CLI), uses HTTP endpoints for peer discovery, 
and leverages gRPC for efficient data transfer. Preliminary evaluation indicates reduced 
storage overhead, improved retrieval speed, and resilience under node churn. This work lays 
the foundation for future enhancements such as access control, deduplication, versioning, and 
dashboard-based observability. 
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1. Introduction 

The rapid growth of global data has 
created significant challenges for storage 
infrastructure, with estimates suggesting 
that the total volume of digital information 
will surpass 180 zettabytes by 2025 [1]. 
Conventional centralized storage 
platforms, such as Dropbox and Google 
Drive, have provided convenient solutions 
but remain fundamentally limited. By 
concentrating both resources and risks 
within a single infrastructure, these 
systems are highly susceptible to outages, 
cyberattacks, and escalating operational 
costs. In addition, their approach to data 
security often treats encryption as a 
supplementary feature rather than a 
foundational principle, thereby exposing 
users to potential privacy breaches [2], [3]. 

To address these limitations, peer-to-peer 
(P2P) architectures have emerged as an 
appealing alternative. By distributing 
storage responsibilities across multiple 
nodes, P2P networks inherently improve 
fault tolerance and scalability [4]. 
However, existing implementations still 
struggle to integrate advanced features 
such as real-time compression, robust 
encryption, and automated replication in a 
seamless manner [5], [6]. As a result, their 
adoption in performance- and 
security-sensitive domains has remained 
limited. 

This research presents the design and 
implementation of a secure, efficient, and 
modular peer-to-peer distributed storage 
system that overcomes these shortcomings. 
The system combines LZ4-based real-time 
compression [7], authenticated encryption 
mechanisms [8], and consistent hashing to 
deliver reliability, efficiency, and privacy 

by design. A carefully constructed upload 
and retrieval pipeline integrates 
compression, encryption, and chunking 
into a streamlined process, while 
replication and self-healing mechanisms 
ensure durability even in environments 
characterized by dynamic peer churn [9], 
[10]. Furthermore, the system incorporates 
a security model with strong key 
management and hardened transport 
layers, supported by a metadata tier built 
on BadgerDB to track file-chunk 
mappings, encryption details, timestamps, 
and operation logs. 

To reduce operational friction and enhance 
usability, the system provides both 
command-line and HTTP-based interfaces, 
while gRPC ensures efficient and typed 
data transfer [11]. The resulting 
architecture eliminates single points of 
failure, achieves horizontal scalability, and 
embeds robustness and privacy as core 
design principles rather than afterthoughts. 
In addition, the paper outlines a 
comprehensive benchmarking strategy to 
evaluate throughput, latency, availability, 
recovery, and storage efficiency, thereby 
validating the system’s practical 
applicability [12], [13]. 

In summary, this work contributes to 
complete implementation-oriented 
architecture for encrypted and compressed 
peer-to-peer storage that not only improves 
efficiency but also redefines the role of 
privacy and resilience in distributed 
systems [14]-[16]. 

 
 

 

 



2. Literature Review 

Many researchers have explored the 
combination of compression, encryption, 
and distributed architectures, each 
contributing significant insights into 
efficient and secure data storage. Early 
studies have shown that compression-first 
transfer pipelines can substantially reduce 
bandwidth consumption and improve 
overall system efficiency, making them 
highly suitable for large-scale storage 
environments [5], [12]. Authenticated 
encryption schemes such as AES-GCM 
and ChaCha20-Poly1305 have also been 
widely adopted for their ability to 
guarantee both confidentiality and 
integrity with relatively low computational 
overhead [8], [16]. Distributed file 
systems, particularly the InterPlanetary 
File System (IPFS), demonstrate the 
advantages of peer-to-peer addressing and 
resilience against single points of failure 
[3], [10]. However, despite its robustness 
in distribution, IPFS does not natively 
incorporate encryption or compression, 
limiting its applicability in environments 
where both data security and efficiency are 
primary requirements. Consistent hashing 
has therefore emerged as a standard 
technique for balancing load and ensuring 
fair distribution of data chunks across 
dynamic peer clusters, providing 
robustness in networks where nodes 
frequently join or leave [9], [20]. 

The field of peer-to-peer systems has seen 
substantial progress, with IPFS serving as 
one of the most influential designs for 
decentralized file storage based on content 
addressing. While its advantages in 
scalability and replication are widely 
recognized, its lack of integrated security 
mechanisms has restricted its adoption in 

sensitive domains. Subsequent studies, 
such as the work of Mislove and Druschel, 
investigated scalable search and storage 
techniques in dynamic P2P environments, 
highlighting the challenge of maintaining 
resilience in the face of high node churn 
[4]. These findings underscore the 
importance of designing distributed 
architectures that can withstand instability 
while sustaining performance. More recent 
surveys on P2P file sharing systems and 
distributed file systems also reinforce the 
need for integrating stronger security 
models into decentralized designs [1], [7], 
[15]. 

Research on data compression and 
encryption has similarly evolved in 
parallel with distributed storage. 
Compression has long been recognized as 
essential for reducing storage overhead 
and improving transmission efficiency. 
Classical approaches such as the 
Burrows–Wheeler Transform (BWT) 
demonstrated the theoretical benefits of 
sequence-based transformations [5], but 
modern lightweight algorithms like LZ4 
provide a more practical balance between 
compression ratio and speed [6], [13]. 
LZ4, in particular, has been highlighted for 
its fast decompression performance, 
making it highly suitable in real-time 
systems where quick data retrieval is 
critical [7]. On the encryption front, 
AES-GCM has become the de facto 
standard due to its robustness and 
widespread hardware acceleration support 
[2], while ChaCha20-Poly1305 has been 
increasingly deployed in scenarios where 
AES acceleration is not available or 
desirable [16]. Together, these methods 
offer a dual advantage: reduced resource 
consumption and uncompromised security. 



Another key research area involves file 
chunking and replication strategies. 
Dividing files into smaller, manageable 
chunks improves scalability and fault 
tolerance, enabling efficient data 
distribution across a peer network. 
Consistent hashing has proven effective 
for distributing chunks evenly while 
minimizing reshuffling overhead when 
nodes join or leave [9], [20]. Replication, 
often implemented through simple 
triple-replica strategies, remains essential 
for ensuring data durability and 
availability, particularly under frequent 
churn conditions [8], [14]. Recent works 
have also proposed blockchain-assisted 
replication and access control models that 
further strengthen integrity and auditability 
in distributed environments [10], [14]. 

This study builds upon and synthesizes 
these research directions by proposing a 
unified architecture that integrates 
compression, encryption, distribution, and 
replication within a single peer-to-peer 
framework. Unlike prior approaches that 
often treated these components in 
isolation, our design emphasizes 
confidentiality, integrity, efficiency, and 
durability as inseparable requirements of 
modern distributed storage systems [11], 
[18]. By aligning storage optimization 
with robust security primitives and 
scalable distribution strategies, our 
approach seeks to overcome the 
fragmentation in prior solutions and 
provide a cohesive model suitable for 
real-world deployments. 

 

3. Design Goals and Requirements 

The design of the proposed system is 
driven by a set of goals that ensure it 

remains secure, efficient, scalable, and 
reliable, while also being simple to operate 
and flexible enough to accommodate 
future extensions. Security forms the 
foundation of the architecture. Every data 
chunk stored in the system is encrypted 
using authenticated encryption methods 
such as AES-GCM and 
ChaCha20-Poly1305, which are widely 
recognized for offering both 
confidentiality and integrity guarantees 
with minimal computational overhead [8], 
[16]. Authentication is enforced across all 
inter-node communications, and optional 
support for TLS further strengthens the 
protection of data in transit. This layered 
security model aligns with recent studies 
on secure cloud and distributed storage, 
which emphasize that encryption and 
access control must be embedded as core 
design elements rather than added as 
secondary features [2], [14]. 

Efficiency is an equally important 
objective. The system integrates the LZ4 
compression algorithm to reduce storage 
overhead while maintaining extremely fast 
decompression speeds. This choice is 
supported by prior evaluations of 
compression in distributed file systems, 
which demonstrate that lightweight 
algorithms such as LZ4 strike the best 
balance between resource consumption 
and throughput in real-time environments 
[7], [12]. By prioritizing performance and 
minimizing CPU overhead, the system is 
well-suited for latency-sensitive 
applications, such as distributed analytics 
platforms and large-scale cloud storage 
backends. 

Scalability is achieved through the 
adoption of consistent hashing, a technique 
extensively studied in distributed systems 



literature for its ability to balance loads 
and avoid excessive reshuffling as nodes 
join or leave the network [9], [20]. This 
approach allows the system to scale 
horizontally without imposing complex 
rebalancing operations, ensuring 
predictable performance even under 
dynamic peer churn. To guarantee 
availability and durability, the system 
incorporates a replication factor of three, a 
standard approach in distributed storage 
frameworks such as HDFS and Ceph, 
which has been shown to offer a practical 
balance between fault tolerance and 
storage efficiency [8], [13]. Moreover, the 
system integrates proactive self-healing 
mechanisms that automatically restore 
missing replicas, reducing downtime and 
ensuring resilience in the face of failures. 

Operational simplicity is another central 
design requirement. The system provides a 
lightweight command-line interface (CLI) 
that consolidates management tasks, 
making it accessible to both developers 
and administrators. Health monitoring is 
supported through HTTP endpoints, while 
communication between peers is 
facilitated using gRPC, a modern protocol 
that supports efficient, type-safe, and 
low-latency data transfer [11]. These 
design decisions are consistent with recent 
research advocating for operationally 
lightweight distributed systems that 
minimize administrative complexity 
without sacrificing robustness [3], [15]. 

Finally, extensibility is emphasized to 
ensure the system remains relevant as new 
requirements emerge. The architecture has 
been structured to support enhancements 
such as file versioning, public link sharing, 
fine-grained access control, 
dashboard-based monitoring, and 

geo-aware replication strategies. Similar 
directions have been proposed in recent 
surveys on distributed file systems, which 
identify modularity and extensibility as 
critical requirements for future-proof 
storage infrastructures [1], [17]. By 
aligning with these design priorities, the 
proposed system contributes a balanced 
solution that simultaneously addresses the 
fundamental requirements of modern 
distributed file storage while remaining 
adaptable to evolving demands. 

 

4. System Architecture 

The architecture of the proposed system 
has been designed with modularity, 
extensibility, and resilience as its guiding 
principles. It brings together several 
critical components that collectively 
ensure secure storage, efficient data 
transfer, reliable replication, and seamless 
user interaction in a peer-to-peer 
environment. Unlike centralized storage 
systems, which rely on a single control 
plane, the architecture deliberately 
decentralizes core functionalities such as 
chunk storage, replication, and metadata 
tracking. This approach reduces the risk of 
bottlenecks, enhances scalability, and 
improves fault tolerance in dynamic 
network environments, in line with the 
trends observed in modern distributed file 
system designs [1], [7]. 

At the user-facing layer, the client SDK 
and command-line interface (CLI) serve as 
the primary interface for interacting with 
the system. The CLI not only hides the 
underlying complexity of compression, 
encryption, chunking, and communication 
but also provides an intuitive set of 



commands for everyday operations. Users 
can upload files, download and reassemble 
them, rename stored content, or delete 
outdated data without having to directly 
interact with the distributed network. This 
design ensures that even non-technical 
users can benefit from the advanced 
security and efficiency features embedded 
in the system. The SDK also exposes 
programmatic access, enabling developers 
to integrate storage functionalities into 
higher-level applications. Similar 
user-centric interfaces have been adopted 
in recent distributed and cloud-based file 
systems to lower operational complexity 
[2], [15]. 

 

 

Fig 1: Block Diagram of  DisktroByte 

 

The next critical layer is the storage 
infrastructure, built upon chunk nodes that 
persist encrypted chunks on local disks. 
These nodes are lightweight in design but 
collectively provide massive storage 
capacity when scaled across a network. 
Each chunk node actively participates in 
replication processes, ensuring redundancy 
and fault tolerance, a design pattern also 
reflected in distributed storage frameworks 
such as HDFS and Ceph [8], [13]. A 
BadgerDB-backed metadata service 
supports these operations by maintaining 
mappings between file identifiers and their 
respective chunk hashes, along with 
associated encryption details, timestamps, 
and replication status. The metadata 
service also records lifecycle operations 

such as renames and deletions, making the 
system auditable and transparent. While 
the current implementation employs a 
centralized metadata service for simplicity, 
the architecture anticipates future 



decentralization to remove potential 
bottlenecks at very large scales [10], [17]. 

To balance load across the network, the 
system employs a registry that implements 
consistent hashing. Consistent hashing 
minimizes the movement of chunks when 
new nodes join or existing nodes leave, 
ensuring stability in highly dynamic 
peer-to-peer environments. This technique 
has been extensively validated in prior 
research as a reliable way to distribute data 
evenly while avoiding hotspots [9], [20]. 
On top of this, the replication manager 
constantly monitors system health, 
enforcing a default replication factor of 
three. If a node fails or becomes 
unavailable, the replication manager 
initiates a self-healing process, 
automatically restoring missing replicas 
from healthy nodes. This guarantees that 
availability and durability requirements are 
met, even in the presence of frequent 
churn, similar to approaches discussed in 
recent surveys on scalable distributed file 
systems [5], [14]. 

Networking is another crucial aspect of the 
system. A dual-layer communication 
model is used to balance transparency with 
performance. On one hand, HTTP 
endpoints provide lightweight services 
such as peer discovery, liveness checks, 
and basic monitoring. On the other hand, 
gRPC is leveraged for high-performance 
communication, especially for bulk data 
transfer and control plane operations. 
gRPC supports strongly typed interactions 
and efficient serialization, which 
minimizes latency and bandwidth usage 
during data exchange. This layered design 
makes the system both developer-friendly 
and performance-optimized, aligning with 

modern P2P storage frameworks [11], 
[19]. 

The flow of data within the system is 
carefully structured. During an upload, the 
file is first passed through an LZ4 
compressor to reduce storage footprint and 
transmission cost. Once compressed, the 
file undergoes encryption using 
AES-256-GCM or ChaCha20-Poly1305, 
both of which are authenticated encryption 
schemes that guarantee confidentiality and 
integrity [6], [16]. The resulting ciphertext 
is then split into fixed-size chunks, 
typically ranging between 1 MB and 8 
MB, each chunk being hashed using 
SHA-256 for unique identification and 
integrity verification. Consistent hashing is 
used to assign these chunks to nodes, and 
replication ensures redundancy. Finally, 
the metadata service is updated to reflect 
the new file’s mappings and cryptographic 
context. During a download, this process is 
reversed: the client queries the metadata 
service, retrieves the relevant chunks, 
verifies their integrity, decrypts the 
content, decompresses the data, and 
reassembles the original file. This pipeline 
ensures that data remains secure, 
consistent, and efficient throughout its 
lifecycle [12]. 

The methodology underlying the system 
can be broken down into several detailed 
processes. Chunking provides fault 
isolation and efficient distribution by 
splitting files into manageable segments. 
Compression using LZ4 minimizes 
overhead while providing extremely fast 
decompression, enabling near real-time 
access. Encryption with AES-256-GCM or 
ChaCha20-Poly1305 ensures that each 
chunk remains confidential and 
tamper-proof. Distribution based on 



consistent hashing guarantees load 
balancing and resilience under churn, 
while replication with a factor of three 
provides durability even in hostile 
environments. Self-healing mechanisms 
ensure that missing chunks are restored 
automatically, maintaining data reliability 
without human intervention [5], [13]. 
Metadata management with BadgerDB 
ensures quick lookups and updates, 
maintaining an accurate picture of the 
system’s state. Networking, facilitated by 
HTTP and gRPC, makes the system both 
observable and performant. Each of these 
processes contributes to a tightly 
integrated workflow where efficiency and 
security reinforce each other rather than 
competing. 

Security is embedded at three distinct 
levels. At rest, all chunks are encrypted 
with unique per-file keys, preventing 
unauthorized access even if nodes are 
compromised. In transit, optional TLS and 
mTLS secure inter-node communication 
against eavesdropping and 
man-in-the-middle attacks. Integrity is 
guaranteed by authentication tags 
associated with each encrypted chunk, 
verified during retrieval to ensure data has 
not been altered. The system also supports 
key rotation at the file-version level, 
ensuring long-term security against 
evolving threats. This layered security 
model ensures that the architecture not 
only meets but exceeds the baseline 
requirements for confidentiality, integrity, 
and availability in distributed 
environments [2], [14]. 

The system has been implemented in the 
Go programming language, chosen for its 
concurrency model, lightweight 
goroutines, and efficient networking 

libraries. The implementation follows a 
package-based structure that separates 
concerns across peer management, 
chunking, compression, encryption, 
storage, metadata handling, distribution, 
discovery, and transfer. This modular 
design makes the system maintainable and 
extensible. The CLI includes commands 
such as "server" to launch a node, "chunk 
<file>" to divide files, "upload <file> 
<peer>" to compress, encrypt, and store 
data, and "reassemble <name>" to retrieve 
and reconstruct files. Local disk currently 
serves as the default backend, though 
support for S3 and MinIO is planned for 
cloud-native deployments. Configuration 
is flexible and can be managed through 
YAML files or environment variables, 
allowing users to tune parameters such as 
ports, cipher selection, replication factor, 
and compression policy [3], [15]. 

In summary, the system architecture 
provides a comprehensive, end-to-end 
solution for secure and efficient 
peer-to-peer storage. By tightly integrating 
compression, encryption, distribution, and 
replication, it eliminates the shortcomings 
of existing systems that address these 
aspects in isolation. Its modular 
implementation ensures adaptability to 
future requirements, while its embedded 
security model ensures resilience against 
both accidental failures and malicious 
threats. Figure 1 illustrates the interaction 
between the core components and the flow 
of data across the system, highlighting the 
synergy between functionality and security 
[1], [19]. 
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5. Result and Conclusion 

The initial evaluations have yielded 
promising results, demonstrating the 
effectiveness of the proposed system in 
addressing the challenges of modern 
distributed storage. One of the most 
notable findings is the system’s ability to 
significantly reduce storage overhead, 
particularly for highly compressible files 
such as text documents and log data. The 
adoption of the LZ4 algorithm achieved 
measurable space savings while 
maintaining extremely fast decompression 
speeds, which is vital for real-time access 
scenarios [7], [12]. These results are 
consistent with prior research showing that 
lightweight compression schemes provide 
substantial performance gains in 
distributed storage systems without 
imposing excessive CPU load [5], [18].​
​

 

Fig 2: Command Line Interface of Project 

Another key observation was the system’s 
resilience to node failures. During 
controlled experiments, the architecture 
was able to automatically detect missing 
chunks and restore them using replicas 
maintained across the peer network. This 
self-healing process proved reliable and 
fast, ensuring that data availability was 
preserved even under high churn 
conditions. Such resilience aligns with the 

strategies highlighted in distributed file 
system studies, where replication and 
proactive recovery are considered essential 
for durability and fault tolerance [8], [13], 
[20]. 

 

Fig 3: File Operation Logs  

Scalability also emerged as a strong point 
of the system. As additional nodes were 
introduced, the system’s overall 
throughput improved proportionally. 
Consistent hashing ensured even load 
distribution, preventing the emergence of 
hotspots and maintaining stable 
performance across dynamic topologies 
[9], [19]. Latency remained consistently 
low, indicating that the system can handle 
larger datasets and more intensive 
workloads without compromising 
efficiency. These outcomes validate the 
architectural choice of combining 
chunking, compression, encryption, and 
hashing into a streamlined workflow that 
naturally scales with network growth [1], 
[11]. 

 

Fig 4: Superadmin Interface 



In terms of storage efficiency, the system 
performed particularly well with 
compressible data. By compressing files 
before storage, it achieved significant 
reductions in storage requirements and 
network transfer costs. For files that were 
already compressed, such as video 
archives and media files, the system 
bypassed unnecessary compression, 
thereby avoiding wasted computational 
resources and ensuring consistent 
performance. This adaptive behavior 
mirrors the findings of recent studies that 
emphasize the need for context-aware 
compression in large-scale distributed 
environments [6], [15]. 

 

Fig 5: Dashboard of Disktrobyte 

 

In conclusion, this research introduces a 
peer-to-peer storage solution that tightly 
integrates compression, encryption, and 
replication to achieve both efficiency and 
security. By leveraging LZ4 for 
lightweight compression, AES-256-GCM 
and ChaCha20-Poly1305 for authenticated 
encryption, and consistent hashing for 
balanced distribution, the system 
demonstrates that it is possible to deliver 
fast, secure, and fault-tolerant file storage 
without relying on centralized 

infrastructures [2], [14]. ​

 

Fig 6: Reassembly Command in 
Disktrobyte 

 

The initial results show that the system is 
not only scalable and fault-tolerant but 
also highly efficient in its use of resources. 
Its self-healing replication mechanisms 
guarantee availability during node churn, 
while the integrated compression and 
encryption pipeline reduces bandwidth 
consumption and storage costs. These 
features collectively position the system as 
a viable alternative to centralized 
cloud-based storage solutions, which often 
suffer from cost inefficiencies and single 
points of failure [3], [16]. 

 

Fig 7: System Administration Interface 

Looking ahead, further improvements are 
planned to enhance the system’s 
capabilities. Future work will focus on 
integrating decentralized metadata 
management to remove potential 
bottlenecks, improving access control with 
certificate- or attribute-based models, and 



incorporating geo-aware replication to 
optimize wide-area deployments [10], 
[17]. Additionally, the introduction of 
features such as file versioning, public link 
sharing, and a monitoring dashboard will 
improve usability and make the system 
attractive for broader adoption in 
enterprise and research contexts. These 
planned enhancements build upon the 
strong foundation of this work, with the 
goal of delivering a truly robust and 
adaptable distributed storage solution [4], 
[15]. 
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